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Abstract: Age-related macular degeneration (AMD) is a degenerative aging disorder, which 
can lead to irreversible vision loss in older individuals. The emergence of clinical applications 
of retinal hyper-spectral imaging provides a unique opportunity to capture important spectral 
signatures, with the potential to enhance the molecular diagnosis of retinal diseases. In this 
study, we use a machine learning classification approach to explore whether hyper-spectral 
images offer an improved outcome compared to standard RGB images. Our results show that 
the classifier performs better on hyper-spectral images with improved accuracy and 
sensitivity for drusen classification compared to standard imaging. By examining the most 
important features in the classification task, our data suggest that drusen are highly 
heterogeneous. Our work provides further evidence that hyper-spectral retinal image data are 
uniquely suited for computer-aided diagnosis and detection techniques. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Age-related macular degeneration (AMD) is a major health burden that can lead to 
irreversible vision loss in the elderly population [1]. Early detection of AMD is extremely 
important to identify patients who are at high risk of permanent vision loss and who can 
benefit from early preventative interventions. Drusen, the characteristic early AMD lesion, 
appears as yellowish deposits under the retina. The molecular composition of drusen has been 
studied extensively using biochemical and molecular techniques. Non-invasive approaches 
for detecting and distinguishing these lesions in healthy retinal images have become 
important in the medical informatics field [2,3]. 

Clinically, RGB fundus imaging is the gold standard modality for drusen detection and 
AMD risk stratification. RGB fundus images visualize drusen based on their color and 
overlying pigment variation in the fundus [4]. However, these images have low contrast and 
suffer from heterogamous illumination [5]. Fluorescein angiography (FA) can more easily 
detect some forms of subtle drusen, e.g. cuticular drusen [4], with the distinct disadvantage of 
being invasive and requiring intravenous dye injection. Fundus auto-fluorescence (FAF) 
images, though non-invasive, cannot visualize all forms of drusen [4]. Optical coherence 
tomography (OCT) is another widely used modality in AMD [6]. The advantage of OCT is 
the ability to visualize the retinal structure in high resolution, especially for characterizing 
leakage of blood, fluid and disorganization of the retinal structure, making it ideal for non-
invasive diagnosis and monitoring of neovascular AMD and the response to anti-VEGF 
therapy [1]. A more comprehensive review of the different imaging modalities in AMD can 
also be found in [7]. 
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In the current study, in addition to standard RGB fundus images, we investigated another 
image modality, hyper-spectral retinal imaging. Using a prototype device, we acquired fundus 
reflectance images at 16 different wavelengths, as detailed by Li et al. [8]. The benefit of 
hyper-spectral images are their ability to capture, non-invasively, a large spectral data set, 
with the potential to identify important biomarkers for diagnosis of AMD [9]. Lee et al. 
analyzed the hyper-spectral signatures of drusen in hyper-spectral fundus images using non-
negative matrix factorization (NMF) [10]. Kaluzny et al. and Fawzi et al. further investigated 
hyper-spectral mapping of macular pigment [11,12]. Other researchers focused on detecting 
the characteristics of drusen and retinal pigment epithelium using hyper-spectral auto-
fluorescence images [13–15]. In this study, we extracted Haralick texture features [16] for 
each individual wavelength of a hyper-spectral data set and adopted a classification approach 
to investigate different feature characteristics comparing drusen and non-drusen regions of 
interest. 

Previous research has mostly focused on exploring different methods to detect drusen. 
These methods include image processing and computer vision techniques alone [17–23] or in 
combination with machine learning algorithms [24–29]. For example, Mittal and Kumari 
implemented a combination of gradient-based segmentation and edge linking-procedure and 
achieved 98.55% accuracy for detecting intermediate drusen [23]. García-Floriano et al. 
adopted a Support Vector Machine (SVM) algorithm to classify images with or without 
drusen and achieved an accuracy of 92.16% [28]. The limitations of previous studies include 
considering only green channel images, which might suffer from loss of important 
information. In addition, the validation data sets were small; for example, García-Floriano et 
al. only used 33 drusen images and 37 healthy tissue images [28]. In our study, we address 
these limitations by considering all image channels as well as generating larger validation 
data sets by cropping all the regions of interest. 

While many low-level image features such as SIFT and SURF [30], wavelets [31], and 
extracted image spatial information based on histogram of orthogonal vectors or triangular 
regions [32,33] have been used for general image classification studies, only a few have been 
explored for drusen diagnosis. For example, although Haralick texture features have been 
widely used in the computer-aided diagnosis field, such as for lung nodules [34], liver 
diseases [35], and parotid-gland injury [36], their use in retinal imaging and specifically for 
drusen diagnosis has been limited. Prasath and Ramya used drusen texture features to 
segment the drusen in RGB retinal images, using only the green channel because of its higher 
contrast compared with the other two channels [37]. In our study, instead of setting a 
threshold value for drusen segmentation, we employed a classification approach to classify 
the drusen and non-drusen images using all 12 Haralick texture features and all 16 hyper-
spectral wavelength channels. To our best knowledge, this is the first study that investigates 
the role of texture in drusen diagnosis using machine learning techniques and hyper-spectral 
retinal images. 

Newer machine learning approaches based on deep learning have been recently proposed 
to learn directly from the raw image data rather than from extracted low-level image features. 
Lee et al. [38] implemented the deep learning method to distinguish normal OCT images 
from images of patients with AMD. Burlina et al. [39] used transfer learning and universal 
features derived from deep convolutional neural networks (DCNN) to classify different stages 
of AMD images. More recently, Schmidt Erfurth et al. used a deep learning approach to 
predict AMD progression [40]. However, training and testing deep learning algorithms 
require a large number of images, which makes these algorithms not applicable to settings 
with limited image data sets. 

In summary, we aim to study the effects of texture as a biomarker for drusen and to 
compare the classification performance between hyper-spectral retinal images and RGB 
retinal images. Since we focus on lesion classification rather than lesion detection, we 
manually cropped drusen and healthy retinal tissue region of interest in hyper-spectral images 
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In our study, we calculated 4 GLCM for 8gL = , 1d = , and 0 , 45 ,90 ,180θ ο ο ο ο= ; for 

each GLCM we extracted 12 Haralick texture features that were averaged with respect to the 
angle. The texture features are angular-second moment (energy), contrast, correlation, 
variance, inverse difference moment, sum average, sum variance, entropy, sum entropy, 
difference variance, difference entropy, information measure of correlation and maximal 
correlation coefficient. This set of texture features is chosen to quantify second-order gray 
level properties such as local uniformity, variance, and homogeneity. The Appendix Table 15 
summarizes the definitions of these features [43]. We also provided the link to download the 
data sets in this study (Dataset 1 [44]). 

2.4 Drusen vs. non-drusen classification 

To determine whether hyper-spectral images offer an improved outcome compared to 
standard RGB images based on intensity and texture features, we implemented four binary 
classifiers to differentiate between healthy (non-drusen) and non-healthy (drusen) tissues: 
decision trees, naïve Bayes, AdaBoost with stump trees, and random forests. First, we 
examined different split ratios between the training and testing sets (80%-20%, 70%-30%, 
60%-40% and 50%-50%). For each classifier with a certain training vs. testing split ratio, we 
repeated the process 30 times and calculated the mean accuracy, sensitivity (drusen is the 
positive case) and specificity (non-drusen is the negative case) under 95% confidence 
interval. Second, we compared the classification results for hyper-spectral and RGB data sets 
by testing the mean accuracies and mean sensitivities (calculated across the 30 trials) between 
different combinations of training vs. testing split ratio, classifier type, and image modality 
using Welch’s t-test [45]. Since we had more hyper-spectral ROIs, we under-sampled the 
hyper-spectral ROI image data set to balance it with the number of ROIs present in the RGB 
images. In the rest of this section we provide the mathematical details for each one of the four 
classifiers. 

Decision Tree is a greedy algorithm that constructs a classification tree in a top-down, 
recursive, divide-and-conquer manner [46]. A decision tree can be represented as a flow-
chart-like tree structure, where the root node represents all the samples S , each internal node 
represents a test on a feature A , the outcome of the test is represented by a branch, and the 
leaf nodes are target class distributions for m  distinct classes ( 1, , )iC i m=   [46]. The 

algorithm first starts with the root node; if the samples belong to the same class, then the node 
becomes a leaf node and is labeled with the class. Otherwise, the algorithm uses information 
gain 1 2( , , , )mI s s s  to select a feature A  that becomes the test feature at that node and 

divides the samples into different groups: 

1 2 2
1

( , , , ) log ( ),
m

m i i
i

I s s s p p
=

= − (2)

where i
i

s
p

s
= and is  is the number of samples of S  in class iC  . 

If the feature A  has v  different values, 1 2{ , , , }va a a , then the feature A  can be used to 

partition S  into v  subsets, 1 2{ , , , }vS S S . The entropy is defined as 

1
1

1

( ) ( , , )
v

j mj
j mj

j

s s
E A I s s

s=

+ +
=


 (3)

where ijs  represents the number of samples that have value ja  for feature A  and belong to 

class iC  and s  represents the number of samples at the partition node. The information gain 

by branching on feature A  is 
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 1 2( ) ( , , , ) ( )mGain A I s s s E A= −  (4) 

The algorithm chooses the attribute with the highest information gain to separate the 
samples and uses the same process recursively for the samples at each partition node. The 
recursive partition stops when all the samples in a node belong to the same class or there are 
no more features or samples to split the node. 

In this study, we implemented 10-fold cross validation method [47] on a training set to 
find the optimal configuration of the decision tree that leads to the minimum average cross-
validation error. 

Naïve Bayes is a probabilistic classifier that implements Bayes’ theorem with the 
assumption that all the features are independent. However, Pedro et al. [48] found that even in 
the situation where features are dependent, Naïve Bayes can have a better classification 
performance. Suppose we have a new instance x  with n  features 1 2( , , , )nx A A A=  , the 

predicted class C  is defined as 

 {1, , }
1

( ) arg max ( ) ( | )
n

k m k i k
l

C x p C p x C∈
=

= ∏  (5) 

AdaBoost is an ensemble learning classifier that combines weak learners and assigns 
weights to training instances and weak learners th , 1t T=  , where T  is the total number of 

learners. The algorithm assigns higher weights to most likely misclassified cases [49]. In this 
study, we choose stump trees as our weak learners. In the first iteration, the algorithm gives 
equal weight D  to all the training instances 1 1( , ) ( , )s sx y x y  where iy  belongs to class iC : 

 1

1
( ) ,  for  1, ,D i i S

S
= =   (6) 

The weight for a weak classifier th  is defined as 

 
11

ln ,
2

t
t

t

εα
ε

 −
=  

 
 (7) 

where tε  is the classification error at iteration t  . The updated weight at iteration 1t +  is 

defined as 

 1

( ) exp( ( ))
( ) ,t t i t i

t
t

D i y h x
D i

z

α
+

−
=  (8) 

where tz  is the normalization factor. The output of the final hypothesis is 

 
1

( ) ( )
T

t t
t

H x sign h xα
=

 =  
 
  (9) 

We also implemented 10-fold cross validation on training set to find the optimal number 
of iterations that leads to the minimal average cross validation error. 

Random Forest is an ensemble of classifiers that creates a group of decision trees from 
the original data by bootstrapping and then randomly choosing features to build the trees [50]. 
Because of its randomness, random forest is robust to outliers and overfitting problems. The 
algorithm classifies in instance by a majority vote across all the classification outputs of the 
individual decision trees [50,51]. 

To determine the optimal number of features and trees, we examined the “Out-of-Bag” 
(OOB) error as a measurement of classification performance. Figure 5 illustrates the 
calculation process. OOB error is the average error of all the instances in the data set while 
each instance error is the average error of all the trees that do not select the instance. 
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accuracy, sensitivity and specificity under the 95% confidence interval in the hyper-spectral 
image testing set, respectively. 

Table 2. Mean accuracy of different split ratios in the hyper-spectral image test data 

 80% - 20% 70%-30% 60%-40% 50%-50% 
Random Forest 95.05% ± 0.34% 94.73% ± 0.21% 94.58% ± 0.23% 94.26% ± 0.21% 
Decision Tree 88.59% ± 0.49% 88.06% ± 0.47% 88.72% ± 0.37% 88.03% ± 0.55% 
Naïve Bayes 79.69% ± 0.61% 79.77% ± 0.4% 79.70% ± 0.34% 79.77% ± 0.3% 

AdaBoost 92.79% ± 0.46% 92.3% ± 0.41% 92.53% ± 0.32 92.43% ± 0.35% 

Table 3. Mean sensitivity of different split ratios in the hyper-spectral image test Data 

 80% - 20% 70%-30% 60%-40% 50%-50% 
Random Forest 94.87% ± 0.35% 93.96 ± 0.36 93.88 ± 0.40 93.42 ± 0.41 
Decision Tree 87.19% ± 0.81% 85.98 ± 1.08 86.78 ± 0.94 85.37 ± 1.28 
Naïve Bayes 78.53% ± 0.96% 78.35 ± 0.62 78.36 ± 0.75 78.21 ± 0.45 

AdaBoost 91.31% ± 0.77% 90.44 ± 0.61 90.77 ± 0.45 90.91 ± 0.53 

Table 4. Mean specificity of different split ratios in the hyper-spectral image test Data 

 80% - 20% 70%-30% 60%-40% 50%-50% 
Random Forest 95.24% ± 0.54% 95.48% ± 0.3% 95.26% ± 0.33% 95.08% ± 0.22% 
Decision Tree 89.95% ± 0.73% 90.09% ± 0.85% 90.60% ± 0.57% 90.62% ± 0.86% 
Naïve Bayes 80.82% ± 0.95% 81.14% ± 0.64% 80.99% ± 0.55% 81.30% ± 0.42% 

AdaBoost 94.23% ± 0.58% 94.10% ± 0.5% 94.24% ± 0.42% 93.91% ± 0.41% 

 
We notice that all four classifiers achieved the highest mean sensitivity (Table 3) for 

classifying drusen regions under the split ratio 80%-20%. Random forest and AdaBoost also 
have the highest mean accuracy with the split ratio 80%-20% (Table 2). We further 
implemented Welch’s t-test to statistically determine whether the difference of the mean 
sensitivity between 80%-20% with other split ratios is significant (Table 5). 

Table 5. P-values of Welch’s t-test when comparing the mean sensitivity between the 
80%-20% split ratio with other split ratios (hyper-spectral image) 

  70%-30% 60%-40% 50%-50% 

80%-20% 

Random Forest 0.0005299 0.0003899 1.25e-06 
Decision Tree 0.07282 0.5029 0.01769 
Naïve Bayes 0.7568 0.7868 0.5437 

AdaBoost 0.07719 0.2243 0.3894 

 
From Table 5, we can conclude that when we use random forest algorithm in hyper-

spectral image data, there is a significant difference of the mean sensitivity between the 80%-
20% split ratio with other split ratios. Random forest algorithm can achieve the highest mean 
sensitivity with 80%-20% ratio. When we use decision tree algorithm, there is a different of 
mean sensitivity between 80%-20% and 50%-50%. However, there is no difference of mean 
sensitivity between different split ratios for other combinations. 

We repeated the same classification process for RGB image data. Tables 6, 7 and 8 show 
the mean accuracy, sensitivity and specificity respectively under the 95% confidence interval 
when using the RGB image. 

Table 6. Mean accuracy of different split ratios in the RGB image test data 

 80% - 20% 70%-30% 60%-40% 50%-50% 
Random Forest 87.91% ± 0.44% 87.50% ± 0.33% 87.04% ± 0.23% 87.14% ± 0.26% 
Decision Tree 84.05% ± 0.47% 83.79% ± 0.37% 83.40% ± 0.29% 83.47% ± 0.42% 
Naïve Bayes 67.12% ± 0.76% 67.24% ± 0.52% 67.16% ± 0.60% 68.23% ± 0.71% 

AdaBoost 88.25% ± 0.49% 87.78% ± 0.36% 87.32% ± 0.23% 87.26% ± 0.26% 
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Table 7. Mean sensitivity of different split ratios in the RGB image test data 

 80% - 20% 70%-30% 60%-40% 50%-50% 
Random Forest 87.20% ± 0.54% 86.63% ± 0.58% 86.33% ± 0.57% 86.12% ± 0.64% 
Decision Tree 82.82% ± 0.96% 82.97% ± 0.80% 82.64% ± 1.15% 81.16% ± 1.20% 
Naïve Bayes 50.57% ± 1.41% 50.21% ± 1.02% 50.49% ± 1.03% 51.86% ± 1.10% 

AdaBoost 87.63% ± 0.58% 86.85% ± 0.56% 86.63% ± 0.46% 86.56% ± 0.62% 

Table 8. Mean specificity of different split ratios in the RGB image test data 

 80% - 20% 70%-30% 60%-40% 50%-50% 
Random Forest 88.61% ± 0.64% 88.34% ± 0.52% 87.73% ± 0.49% 88.14% ± 0.57% 
Decision Tree 85.24% ± 1.04% 84.57% ± 0.62% 84.15% ± 1.23% 85.71% ± 1.08% 
Naïve Bayes 83.17% ± 0.78% 83.75% ± 0.65% 83.31% ± 0.61% 84.09% ± 0.72% 

AdaBoost 88.84% ± 0.70% 88.69% ± 0.57% 87.99% ± 0.48% 87.94% ± 0.52% 

 
From Table 6, we can see that random forest, decision tree and AdaBoost achieved the 

highest mean accuracy with the split ratio 80%-20%. When considering mean sensitivity and 
mean specificity, random forest and AdaBoost also performed the best with the split ratio 
80%-20% (Tables 7 and 8). Similarly, we implemented Welch’s t-test to statistically 
determine whether the difference of the mean accuracy between 80%-20% with other split 
ratios is significant (Table 9). 

Table 9. P-values of Welch’s t-test when comparing the mean accuracy between the 80%-
20% split ratio with other split ratios (RGB image) 

  70%-30% 60%-40% 50%-50% 

80%-20% 

Random Forest 0.1306 0.0008286 0.003449 
Decision Tree 0.3723 0.02169 0.06518 
Naïve Bayes 0.8015 0.9444 0.03347 

AdaBoost 0.1232 0.001051 0.0007104 

 
From Table 9, we can see that in RGB image, there is no significant difference of mean 

accuracy between 80%-20% and 70%-30% for both classifiers under the 95% confidence 
interval. However, for random forest and AdaBoost classifiers, the difference of mean 
accuracy between the split ratio 80%-20% and 60%-40% and the difference between 80%-
20% and 50%-50% are significant. This result indicates that we can choose either 80%-20% 
or 70%-30% as the spit ratio for RGB image data. 

3.2 Classification results using different classifiers 

Based on the split ratio results, we analyzed the classification performance across the four 
classifiers using the 80%-20% as the split ratio. Table 10 summarizes the results across 
classifiers using a 80%-20% ratio and shows that the random forest classifier achieved the 
highest accuracy, sensitivity and specificity for the hyper-spectral image data set based on the 
Welch’s t-test at significance level of 0.05. 

Table 10. Classification performance for hyper-spectral image data set; the numbers 
between parentheses represent P-values of Welch’s t-test when comparing random forest 

with the other classifiers 

 Accuracy Sensitivity Specificity 
Random Forest 95.05% ± 0.34% 94.87% ± 0.35% 95.24% ± 0.54% 
Decision Tree 88.59% ± 0.49% 

(< 2.2e-16) 
87.19% ± 0.81% 

(< 2.2e-16) 
89.95% ± 0.73% 

(< 2.2e-16) 
Naïve Bayes 79.69% ± 0.61% 

(< 2.2e-16) 
78.53% ± 0.96% 

(< 2.2e-16) 
80.82% ± 0.95% 

(< 2.2e-16) 
AdaBoost 92.79% ± 0.46% 

(9.35e-11) 
91.31% ± 0.77% 

(1.173e-10) 
94.23% ± 0.58% 

(0.01189) 
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3.4 Low-level image feature importance analysis 

We further investigated the random forest classification performance by the type of features. 
We focus the analysis of the results on the hyper-spectral image data given the higher 
performance for drusen classification. Table 13 compares the classification results when using 
intensity-based features, texture-based features, and a combination of intensity and texture 
features. The results show that the highest performance is obtained using a combination of 
texture and intensity features, followed in performance by the texture features. The mean 
differences for all accuracy, sensitivity, and specificity values are all significant based on the 
Welch’s t-test (Tables 13 and 14). 

Table 13. Random forest classification result in hyper-spectral testing data using 
different feature sets 

 Accuracy Sensitivity Specificity 
Intensity Features 90.53% ± 0.21% 

(< 2.2e-16) 
89.92% ± 0.40% 

(< 2.2e-16) 
91.12% ± 0.31% 

(< 2.2e-16) 
Texture Features 92.39% ± 0.19% 

(< 2.2e-16) 
90.83% ± 0.47% 

(< 2.2e-16) 
93.92% ± 0.28% 

6.063e-05 
Combined Features 95.05% ± 0.34% 94.87% ± 0.35% 95.24% ± 0.54% 

Table 14. P-values of Welch’s t-test when comparing classification performance using 
intensity features vs texture features 

 Texture Features 
p-values Accuracy Sensitivity Specificity 

Intensity Features < 2.2e-16 0.003531 0.003531 

 
To understand the relevance of the individual low-level image features that distinguished 

drusen ROI from non-drusen ROI, we used the Gini index criterion (Eq. (11) to rank the 
feature importance when building the random forest on all features (both texture and 
intensity). Figure 7 shows the most important low-level image features with the ‘inverse 
difference moment”, a feature describing the local homogeneity in a region, being the most 
important (it has the largest value for the mean decrease in the Gini index). 

As a result, we analyzed the differences in the inverse difference moment features for the 
drusen versus non-drusen ROIs. Based on the definition of the feature, a low inverse 
difference moment value indicates the image is heterogeneous while a higher value indicates 
the region is more homogeneous. Figure 8 shows that, on average, drusen images are more 
heterogeneous confirmed by the statistically significant Welch t-test at a p-value smaller than 
2.2e-16. 
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we determined mathematically that the texture heterogeneity is an important local image 
characteristic that has higher values for the drusen images. 

Furthermore, when comparing the random forest classifiers for the hyper-spectral images 
and the RGB images (Fig. 6), we found that the classification model for the RGB data needed 
a higher number of features (15) per split and more trees (427) to achieve the optimal 
combination of parameters than hyper-spectral images that required only 7 features and 212 
trees. These findings indicate that classification models for the hyper-spectral data are not 
only superior in performance but also have a lower complexity with only few image 
characteristics needed to distinguish between drusen and non-drusen. 

In the context of previous studies, our work validates and extends the work by Prasath and 
Ramya [37] that showed that thresholding certain texture features can help segment drusen 
regions in RGB images. By using a robust Haralick set of features (averaged across different 
displacements and angles) and a machine learning algorithm, we determined the most 
important texture features and their combinations with intensity features for drusen diagnosis. 
Finally, instead of using only the green channel as in [37] and [53] where local binary 
patterns (LBP) features computed in green channel where reported to be the most important 
features in distinguishing drusen from non-drusen images, we showed that hyper-spectral 
imaging has the potential to provide the optimal combination of texture and intensity features 
for drusen ROIs characterization. 

5. Conclusions 

Using hyper-spectral retinal images containing 16 different wavelength channels generated by 
a compact, snapshot hyper-spectral fundus camera [8], we showed the potential advantages of 
hyper-spectral imaging for retinal disease diagnosis. We discovered that drusen ROIs are 
more heterogeneous than the surrounding retinal tissue, a property that can be quantified 
mathematically through one of the Haralick texture feature, the inverse difference moment. 

As future work, we plan to investigate the effect of the location and size of drusen on the 
classification. For example, can we answer questions like ‘Is there any difference between 
drusen centrally located and those near the arcades using texture descriptors’? Augmenting 
the approach presented in this paper with a patch-based segmentation approach as proposed in 
[54] will allow the extension of this work to automatic segmentation of ROIs and eliminate 
the need for manual cropping. This would then allow us to perform automatic drusen 
classification as well as detection. 

Furthermore, newer techniques such as deep learning have been recently explored in 
retinal imaging [38,39] and resulted in promising results. Since these deep learning 
approaches require large image training sets, we plan to acquire a larger hyper-spectral image 
data set and compare the performance of the feature-based random forest classifier with the 
deep learning classification approaches. 
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Appendix 

Table 15. Haralick's Texture Features Employed in the Study 
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